States of matter

गैसों का द्रवण (Liquefaction of gases)

HP = high pressore LT = Low Temp.

Means A gas can be liquifed both by increasing pressure & decreasing Temp. (अर्थात एक गैस को उच्च दाब एवं निम्न ताप पर द्रवित किया जा सकता है)

Means Co₂ can be liquied at 31.1°C

Means In liquefaction of gases is more than significant

यहाँ से 3 parameters हमें पढ़ने है |

Critical Temp.	Critical pressure	Critical volume
T _c	P _c	V _c
The Temp. above which a	The pressure of gas at $T_{\rm C}$	The volumes of 1 molar
gas cannot be liquefy how	is known as Pc	gas at Tc & Vc known as
so much pressure we		Vc
apply		Vc =3b
		Trick- c comes at 3
8 <i>a</i>		position alphabetically
$1 = \frac{1}{27Rb}$	$Pc = a/27b^2$	and
		V=b
		NOTE= a & b are wonder
		as cons

NOTE:- Tc, Pc & Vc are different for different gases for Ex.

 Co_2 - Tc Pc Vc 31.1°C 79.3 bar

Critical Temp.	Boyle's Temp	Inversion Temp
T _c	T _c	T _i
	The Temp. at which a real	It is the double of Boyle's
	gas behaves as an ideal	Temp.
	gas is k/n as Boyle's	
	Temp.	
	T _B	
T _c		T _i
$=$ $\frac{8a}{}$	= <u>a</u>	$=2$ $\frac{a}{}$
27 <i>Rb</i>	Rb	[–] Rb

I can say

 $T_i = 2 \times T_B$

Q. – A gas can be liquefy ?

(a) Above T_c Above P_c

(b) Above T_c Below P_c

(c) Above T_c Below P_c

(d) Below T_C Above P_C

Trick – GlACP को याद रखिये।

Notes be prepared by

Rahul Khandelwal

(Lect. Chemistry)

For all comp.

Ex. – NEET, AIIMS, IIT

CID में जैसे ACP प्रमुख है वैसे ही कैमेस्ट्री में गिरधारी लाल ACP है |

www.webcollection.co.in